
DRAFT! c January 7, 1999 Christopher Manning & Hinrich Schütze. 293

9 Markov Models

HIDDEN MARKOV MODEL S (HMMs) have been the mainstay of the
statistical modeling used in modern speech recognition systems. Despite
their limitations, variants of HMMs are still the most widely used tech-
nique in that domain, and are generally regarded as themost successful. In
this chapter we will develop the basic theory of HMMs, touch on their ap-
plications, and conclude with some pointers on extending the basic HMM
model and engineering practical implementations.
AnHMM is nothing more than a probabilistic function of a Markov pro-HIDDEN MARKOV MODEL

cess. We have already seen an example of Markov processes in the -gram
models of Chapters 2 and 6.Markov processes/chains/modelswere first devel-MARKOV MODEL

oped by Andrei A. Markov (a student of Chebyshev). Their first use was
actually for a linguistic purpose – modeling the letter sequences in works
of Russian literature (Markov 1913) – but Markov models were then devel-
oped as a general statistical tool. We will refer to vanilla Markov models as
Visible MarkovModels (VMMs) when we want to be careful to distinguish
them from HMMs.
We have placed this chapter at the beginning of the “grammar” part of

the book because working on the order of words in sentences is a start at
understanding their syntax. We will see that this is what a VMM does.
HMMs operate at a higher level of abstraction by postulating additional
“hidden” structure, and that allows us to look at the order of categories of
words. After developing the theory of HMMs in this chapter, we look at
the application of HMMs to part-of-speech tagging. The last two chapters
in this part then deal with the probabilistic formalization of core notions of
grammar like phrase structure.

294 9 Markov Models

9.1 Markov Models
Often we want to consider a sequence (perhaps through time) of random
variables that aren’t independent, but rather the value of each variable de-
pends on previous elements in the sequence. For many such systems, it
seems reasonable to assume that all we need to predict the future random
variables is the value of the present random variable, and we don’t need
to know the values of all the past random variables in the sequence. For
example, if the random variables measure the number of books in the uni-
versity library, then, knowing how many books were in the library today
might be an adequate predictor of how many books there will be tomor-
row, and we don’t really need to additionally know how many books the
library had last week, let alone last year. That is, future elements of the se-
quence are conditionally independent of past elements, given the present
element.
Suppose is a sequence of random variables taking

values in some finite set S = , the state space. Then theMarkovMARKOV ASSUMPTION

Properties are:

Limited Horizon:

(9.1)

Time invariant (stationary):

(9.2)

is then said to be a Markov chain, or to have the Markov property.
One can describe a Markov chain by a stochastic transition matrix :

(9.3)

Here, and .
Additionally one needs to specify , the probabilities of different initial

states for the Markov chain:

(9.4)

Here, . The need for this vector can be avoided by specifying
that the Markov model always starts off in a certain extra initial state, ,
and then using transitions from that state contained within the matrix to
specify the probabilities that used to be recorded in .

9.1 Markov Models 295

Figure 9.1 AMarkov model.

From this general description, it should be clear that the word -gram
models we saw in Chapter 6 are Markov models. Markov models can be
used whenever one wants to model the probability of a linear sequence of
events. For example, they have also been used in NLP for modeling valid
phone sequences in speech recognition, and for sequences of speech acts
in dialog systems.
Alternatively, one can represent a Markov chain by a state diagram as

in Figure 9.1. Here, the states are shown as circles around the state name,
and the single start state is indicated with an incoming arrow. Possible
transitions are shown by arrows connecting states, and these arcs are la-
beled with the probability of this transition being followed, given that you
are in the state at the tail of the arrow. Transitions with zero probability
are omitted from the diagram. Note that the probabilities of the outgoing
arcs from each state sum to 1. From this representation, it should be clear
that a Markov model can be thought of as a (nondeterministic) finite state
automaton with probabilities attached to each arc. The Markov properties
ensure that we have a finite state automaton. There are no long distance
dependencies, and where one ends up next depends simply on what state
one is in.
In a visible Markov model, we know what states the machine is passing

through, so the state sequence or some deterministic function of it can be
regarded as the output.
The probability of a sequence of states (that is, a sequence of random

296 9 Markov Models

variables) is easily calculated for a Markov chain. We find that
we need merely calculate the product of the probabilities that occur on the
arcs or in the stochastic matrix:

So, using the Markov model in Figure 9.1, we have:

Note that what is important is whether we can encode a process as a
Markov process, not whether we most naturally do. For example, recall
the -gram word models that we saw in Chapter 6. One might think that,
for , such a model is not a Markov model because it violates the Lim-
ited Horizon condition – we are looking a little into earlier history. But
we can reformulate any -gram model as a visible Markov model by sim-
ply encoding the appropriate amount of history into the state space (states
are then -grams, for example (was, walking, down) would be a state
in a fourgram model). In general, any fixed finite amount of history can
always be encoded in this way by simply elaborating the state space as a
crossproduct of multiple previous states. In such cases, we sometimes talk
of an th order Markov model, where is the number of previous states
that we are using to predict the next state. Note, thus, that an -gram
model is equivalent to an th order Markov model.
Exercise 9-1
Build a Markov Model similar to Figure 9.1 for one of the types of phone numbers
in Table 4.2.

9.2 Hidden Markov Models
In an HMM, you don’t know the state sequence that the model passes
through, but only some probabilistic function of it.

9.2 Hidden Markov Models 297

Cola
Pref.

Iced Tea
Pref.

0.3

0.5

start

0.50.7

Figure 9.2 The crazy soft drink machine, showing the states of the machine and
the state transition probabilities.

Example 1: Suppose you have a crazy soft drink machine: it can be in
two states, cola preferring (CP) and iced tea preferring (IP), but it switches
between them randomly after each purchase, as shown in Figure 1.
Now, if, when you put in your coin, the machine always put out a cola if

it was in the cola preferring state and an iced tea when it was in the iced tea
preferring state, then we would have a visible Markov model. But instead,
it only has a tendency to do this. So we need symbol emission probabilities
for the observations:

For this machine, the output is actually independent of , and so can be
described by the following probability matrix:

Output probability given From state
cola iced tea lemonade

ice_t lem
CP 0.6 0.1 0.3
IP 0.1 0.7 0.2

What is the probability of seeing the output sequence {lem, ice_t} if the
machine always starts off in the cola preferring state?

Solution: We need to consider all paths that might be taken through the
HMM, and then to sum over them. We know the machine starts in state
CP. There are then four possibilities depending on which of the two states
the machine is in at the other two time instants. So the total probability is:

298 9 Markov Models

Exercise 9-2
What is the probability of seeing the output sequence {col,lem } if the machine al-
ways starts off in the ice tea preferring state?

9.2.1 Why use HMMs?
HMMs are useful when one can think of underlying events probabilisti-
cally generating surface events. One widespread use of this is tagging –
assigning parts of speech (or other classifiers) to the words in a text. We
think of there being an underlying Markov chain of parts of speech from
which the actual words of the text are generated. Such models are dis-
cussed in Chapter 10.
When this general model is suitable, the further reason that HMMs are

very useful is that they are one of a class of models for which there exist
efficient methods of training through use of the Expectation Maximization
(EM) algorithm. Given plenty of data that we assume to be generated by
someHMM–where themodel architecture is fixed but not the probabilities
on the arcs – this algorithm allows us to automatically learn the model
parameters that best account for the observed data.
Another simple illustration of how we can use HMMs is in generating

parameters for linear interpolation of -gram models. We discussed in
Chapter 6 that one way to estimate the probability of a sentence:

Sue drank her beer before the meal arrived

was with an -gram model, such as a trigram model, but that just using
an -gram model with fixed tended to suffer because of data sparseness.
Recall from Section 6.3.1 that one idea of how to smooth -gram estimates
was to use linear interpolation of -gram estimates for various , for ex-
ample:

li

This way we would get some idea of how likely a particular word was,
even if our coverage of trigrams is sparse. The question, then, is how to
set the parameters . While we could make reasonable guesses as to what
parameter values to use (and we know that together they must obey the
stochastic constraint), it seems that we should be able to find the
optimal values automatically. And, indeed, we can (Jelinek 1990).
The key insight is that we can build anHMMwith hidden states that rep-

resent the choice of whether to use the unigram, bigram, or trigram prob-
abilities. The HMM training algorithm will determine the optimal weight

9.2 Hidden Markov Models 299

Figure 9.3 A section of an HMM for a linearly interpolated language model. The
notation on arcs means that this transition is made with probability , and that
an is output when this transition is made (with probability 1).

to give to the arcs entering each of these hidden states, which in turn rep-
resents the amount of the probability mass that should be determined by
each -gram model via setting the parameters above.
Concretely, we build an HMM with four states for each word pair, one

for the basicword pair, and three representing each choice of -grammodel
for calculating the next transition. A fragment of theHMM is shown in Fig-
ure 9.3. Note how this HMM assigns the same probabilities as the earlier
equation: there are three ways for to follow and the total probabil-
ity of seeing next is then the sum of each of the -gram probabilities that
adorn the arcs multiplied by the corresponding parameter . The HMM
training algorithm that we develop in this chapter can then be applied to
this network, and used to improve initial estimates for the parameters .
There are two things to note. This conversion works by adding epsilon tran-EPSILON TRANSITIONS

sitions – that is transitions that we wish to say do not produce an output
symbol. Secondly, as presented, we now have separate parameters
for each word pair. But we would not want to adjust these parameters
separately, as this would make our sparse data problem worse not better.
Rather, for a fixed , we wish to keep all (or at least classes of) the pa-

300 9 Markov Models

Set of states
Output alphabet

Intial state probabilities
State transition probabilities
Symbol emission probabilities

State sequence
Output sequence

Table 9.1 Notation used in the HMM chapter.

rameters having the same value, which we do by using tied states. Discus-
sion of both of these extensions to the basic HMM model will be deferred
to Section 9.4.

9.2.2 General form of an HMM
AnHMM is specified by a five-tuple (, , , ,), where and are the
set of states and the output alphabet, and , , and are the probabilities
for the initial state, state transitions, and symbol emissions, respectively.
The notation that we use in this chapter is summarized in Table 9.1. The
random variables map from state names to corresponding integers. In
the version presented here, the symbol emitted at time depends on both
the state at time and at time . This is sometimes called a arc-emissionARC-EMISSION HMM
HMM, because we can think of the symbol as coming off the arc, as in
Figure 9.3. An alternative formulation is a state-emission HMM, where theSTATE-EMISSION HMM
symbol emitted at time depends just on the state at time . The HMM in
Example 1 is a state-emission HMM. But we can also regard it as a arc-
emission HMM by simply setting up the parameters so that ,

. This is discussed further in Section 9.4.
Given a specification of an HMM, it is perfectly straightforward to simu-

late the running of a Markov process, and to produce an output sequence.
One can do it with the program in Figure 9.4. However, by itself, doing
this is not terribly interesting. The interest in HMMs comes from assuming
that some set of data was generated by a HMM, and then being able to
calculate probabilities and probable underlying state sequences.

9.3 The Three Fundamental Questions for HMMs 301

1

2 Start in state with probability (i.e.,)
3 forever do
4 Move from state to state with probabilitiy (i.e.,)
5 Emit observation symbol with probability
6

7 od

Figure 9.4 A program for a Markov process.

9.3 The Three Fundamental Questions for HMMs
There are three fundamental questions that we want to know about an
HMM:

1. Given a model , how do we efficiently compute how
likely a certain observation is, that is ?

2. Given the observation sequence and a model , how do we choose
a state sequence that best explains the observations?

3. Given an observation sequence , and a space of possible models
found by varying the model parameters , how do we
find the model that best explains the observed data?

Normally, the problems we deal with are not like the soft drink machine.
We don’t know the parameters and have to estimate them fromdata. That’s
the third question. The first question can be used to decide betweenmodels
which is best. The second question lets us guess what path was probably
followed through the Markov chain, and this hidden path can be used for
classification, for instance in applications to part of speech tagging, as we
see in Chapter 10.

9.3.1 Finding the probability of an observation
Given the observation sequence and amodel ,
wewish to know how to efficiently compute – the probability of the
observation given the model. This process is often referred to as “decod-
ing”.

302 9 Markov Models

For any state sequence ,

(9.5)

and,

(9.6)

Now,

(9.7)

Therefore,

(9.8)

This derivation is quite straightforward. It is what we did in Exam-
ple 1 to work out the probability of an observation sequence. We sim-
ply summed the probability of the observation occurring according to each
possible state sequence. But, unfortunately, direct evaluation of the result-
ing expression is hopelessly inefficient. For the general case (where one
can start in any state, and move to any other at each step), the calculation
requires multiplications.
Exercise 9-3
Confirm this claim.

The secret to avoiding this complexity is the general technique of dynamicDYNAMIC PROGRAMMING

programming or memoization by which we remember partial results ratherMEMOIZATION

than recomputing them. This general concept crops up in many other
places in computational linguistics, such as chart parsing, and in computer
science more generally (see (Cormen et al. 1990: Ch. 16) for a general intro-
duction). For algorithms such as HMMs, the dynamic programming prob-
lem is generally described in terms of trellises (also called lattices). Here,
we make a square array of states versus time, and compute the probabili-
ties of being at each state at each time in terms of the probabilities for being
in each state at the preceding time instant. This is all best seen in pictures
– see Figures 9.5 and 9.6. A trellis can record the probability of all initial

9.3 The Three Fundamental Questions for HMMs 303

State

3
Time,

Figure 9.5 Trellis algorithms: The trellis. The trellis is a square array of states
versus times. A node at can store information about state sequences which
include . The lines show the connections between nodes. Here we have a
fully interconnected HMMwhere one can move from any state to any other at each
step.

subpaths of the HMM that end in a certain state at a certain time. The prob-
ability of longer subpaths can then be worked out in terms of one shorter
subpaths.
The forward procedure

The form of caching that is indicated in these diagrams is called the forwardFORWARD PROCEDURE

procedure. We describe it in terms of forward variables:

(9.9)

304 9 Markov Models

Figure 9.6 Trellis algorithms: Closeup of the computation of forward probabili-
ties at one node. The forward probability is calculated by summing the
product of the probabilities on each incoming arc with the forward probability of
the originating node.

The forward variable is stored at in the trellis and expresses the
total probability of ending up in state at time (given that the observa-
tions were seen). It is calculated by summing probabilities for all
incoming arcs at a trellis node. We calculate the forward variables in the
trellis left to right using the following procedure:

9.3 The Three Fundamental Questions for HMMs 305

1. Initialization

2. Induction

3. Total

This is a much cheaper algorithm that requires only multiplications.

The backward procedure

It should be obvious that we do not need to cache results working forward
through time like this, but rather that we could also work backward. The
backward procedure computes backward variables which are the total prob-BACKWARD PROCEDURE

ability of seeing the rest of the observation sequence given that we were in
state at time . The real reason for introducing this less intuitive calcu-
lation, though, is because use of a combination of forward and backward
probabilities is vital for solving the third problem of parameter reestima-
tion.
Define backward variables

(9.10)

Thenwe can calculate backward variablesworking from right to left through
the trellis as follows:

1. Initialization

2. Induction

306 9 Markov Models

Output
lem ice_t cola

Time (): 1 2 3 4
1.0 0.21 0.0462 0.021294
0.0 0.09 0.0378 0.010206
1.0 0.3 0.084 0.0315

0.0315 0.045 0.6 1.0
0.029 0.245 0.1 1.0
0.0315
1.0 0.3 0.88 0.676
0.0 0.7 0.12 0.324

CP IP CP CP
1.0 0.21 0.0315 0.019404
0.0 0.09 0.0315 0.008316

CP IP CP
CP IP CP

CP IP CP CP
0.019404

Table 9.2 Variable calculations for (lem, ice_t, cola).

3. Total

Table 9.2 shows the calculation of forward and backward variables, and
certain other variables that we will come to later for the soft drink machine
from Example 1, given the observation sequence (lem, ice_t, cola).

Combining them

More generally, in fact, we can use any combination of forward and back-
ward caching to work out the probability of an observation sequence. Ob-
serve that:

9.3 The Three Fundamental Questions for HMMs 307

Therefore:

(9.11)

The previous equations were special cases of this one.

9.3.2 Finding the best state sequence
The second problem was worded somewhat vaguely as “finding the state
sequence that best explains the observations”. That is because there is more
than one way to think about doing this. One way to proceed would be to
choose the states individually. That is, for each , , we would
find that maximizes .
Let

(9.12)

The individually most likely state is:

(9.13)

This quantity maximizes the expected number of states that will be guessed
correctly. However, it may yield a quite unlikely state sequence. Therefore,
this is not the method that is normally used, but rather the Viterbi algo-
rithm, which efficiently computes the most likely state sequence.

Viterbi algorithm

Commonly we want to find the most likely complete path, that is:

308 9 Markov Models

To do this, it is sufficient to maximize for a fixed :

An efficient trellis algorithm for computing this path is the Viterbi algo-VITERBI ALGORITHM
rithm. Define:

This variable stores for each point in the trellis the probability of the most
probable path that leads to that node. The corresponding variable
then records the node of the incoming arc that led to this most probable
path. Using dynamic programming, we calculate the most probable path
through the whole trellis as follows:
1. Initialization

2. Induction

Store backtrace

3. Termination and path readout (by backtracking). The most likely state
sequence is worked out from the right backwards:

In these calculations, one may get ties. We assume that in that case one
path is chosen randomly. In practical applications, people commonly want
to work out not only the best state sequence but the -best sequences or a
graph of likely paths. In order to do this people often store the best
previous states at a node.
Table 9.2 above shows the computation of the most likely states and state

sequence under both these interpretations – for this example, they prove to
be identical.

9.3 The Three Fundamental Questions for HMMs 309

9.3.3 The third problem: Parameter estimation
Given a certain observation sequence, we want to find the values of the
model parameters which best explain what we observed.
Using Maximum Likelihood Estimation, that means we want to find the
values that maximize :

training(9.14)

There is no known analytic method to choose to maximize . But
we can locally maximize it by an iterative hill-climbing algorithm. This
algorithm is the Baum-Welch or Forward-Backward algorithm, which is a
special case of the Expectation Maximization method which we covered
in greater generality in Section 14.2.2. It works like this. We don’t know
what the model is, but we can work out the probability of the observation
sequence using some (perhaps randomly chosen) model. Looking at that
calculation, we can see which state transitions and symbol emissions were
probably used the most. By increasing the probability of those, we can
choose a revisedmodel which gives a higher probability to the observation
sequence. This maximization process is often referred to as training theTRAINING

model and is performed on training data.TRAINING DATA

Define as shown below. This is the
probability of traversing a certain arc at time given observation sequence
; see Figure 9.7.

(9.15)

Note that .
Now, if we sum over the time index, this gives us expectations (counts):

expected number of transitions from state in

310 9 Markov Models

Figure 9.7 The probability of traversing an arc. Given an observation sequence
and a model, we can work out the probability that the Markov proess went from
state to at time .

expected number of transitions from state to in

So we begin with some model (perhaps preselected, perhaps just cho-
sen randomly). We then run through the current model to estimate the
expectations of each model parameter. We then change the model to max-
imize the values of the paths that are used a lot (while still respecting the
stochastic constraints). We then repeat this process, hoping to converge on
optimal values for the model parameters .
The reestimation formulas are as follows:

expected frequency in state at time(9.16)

expected number of transitions from state to
expected number of transitions from state(9.17)

9.3 The Three Fundamental Questions for HMMs 311

expected number of transitions from to when is observed
expected number of transitions from to(9.18)

Thus, from , we derive . Further, as proved
by Baum, we have that:

This is a general property of the EM algorithm (see Section 14.2.2). There-
fore, iterating through a number of rounds of parameter reestimation will
improve our model. Normally one continues reestimating the parameters
until results are no longer improving significantly. This process of parame-
ter reestimation does not guarantee that we will find the best model, how-
ever, because the reestimation process may get stuck in a local maximum
(or even possibly just at a saddle point). In most problems of interest, the
likelihood function is a complex nonlinear surface and there are many lo-
cal maxima. Nevertheless, Baum-Welch reestimation is usually effective
for HMMs.
To end this section, let us consider reestimating the parameters of the

crazy soft drink machine HMMusing the Baum-Welch algorithm. If we let
the initial model be the model that we have been using so far, then train-
ing on the observation sequence (lem, ice_t, cola) will yield the following
values for :

Time (and)
1 2 3
CP IP CP IP CP IP

CP 0.3 0.7 1.0 0.28 0.02 0.3 0.616 0.264 0.88
IP 0.0 0.0 0.0 0.6 0.1 0.7 0.06 0.06 0.12

and so the parameters will be reestimated as follows:

312 9 Markov Models

Original Reestimated
CP 1.0 1.0
IP 0.0 0.0

CP IP CP IP
CP 0.7 0.3 0.5486 0.4514
IP 0.5 0.5 0.8049 0.1951

cola ice_t lem cola ice_t lem
CP 0.6 0.1 0.3 0.4037 0.1376 0.4587
IP 0.1 0.7 0.2 0.1363 0.8537 0.0

Exercise 9-4
If one continued running the Baum-Welch algorithm on this HMMand this training
sequence, what value would each parameter reach in the limit? Why?
The reason why the Baum-Welch algorithm is performing so strangely here should
be apparent: the training sequence is far too short to accurately represent the be-
havior of the crazy soft drink machine.

Exercise 9-5
Note that the parameter that is zero in stays zero. Is that a chance occurrence?
What would be the value of the parameter that becomes zero in if we did another
iteration of Baum-Welch reestimation? What generalization can one make about
Baum-Welch reestimation of zero parameters?

9.4 HMMs: Implementation, Properties, and Variants

9.4.1 Implementation
Beyond the theory discussed above, there are a number of practical issues
in the implementation of HMMs. Care has to be taken to make the imple-
mentation of HMM tagging efficient and accurate. The most obvious issue
is that the probabilities we are calculating consist of keeping on multiply-
ing together very small numbers. Such calculations will rapidly underflow
the range of floating point numbers on a computer (even if you store them
as ‘double’!).
The Viterbi algorithm only involves multiplications and choosing the

largest element. Thus we can perform the entire Viterbi algorithmworking
with logarithms. This not only solves the problem with floating point un-
derflow, but it also speeds up the computation, since additions are much
quicker than multiplications. In practice, a speedy implementation of the
Viterbi algorithm is particularly important because this is the runtime al-
gorithm, whereas training can usually proceed slowly offline.

9.4 HMMs: Implementation, Properties, and Variants 313

However, in the Forward-Backward algorithm as well, something still
has to be done to prevent floating point underflow. The need to perform
summations makes it difficult to use logs. A common solution is to employ
auxiliary scaling coefficients, whose values growwith the time so that the
probabilities multiplied by the scaling coefficient remain within the float-
ing point range of the computer. At the end of each iteration, when the pa-
rameter values are reestimated, these scaling factors cancel out. Detailed
discussion of this and other implementation issues can be found in (Levin-
son et al. 1983), (Rabiner and Juang 1993: 365–368), (Cutting et al. 1991),
and (Dermatas and Kokkinakis 1995). The main alternative is to just use
logs anyway, despite the fact that one needs to sum. Effectively then one is
calculating an appropriate scaling factor at the time of each addition:

(9.19) funct log_add
if
then

elsif
then
else

fi
.

where is a suitable large constant like . For an algorithm like this
where one is doing a large number of numerical computations, one also
has to be careful about round-off errors, but such concerns are well outside
the scope of this chapter.

9.4.2 Variants
There are many variant forms of HMMs that can be made without fun-
damentally changing them, just as with finite state machines. One is to
allow some arc transitions to occur without emitting any symbol, so-called
epsilon or null transitions (Bahl et al. 1983). Another commonly used variantEPSILON TRANSITIONS

NULL TRANSITIONS is to make the output distribution dependent just on a single state, rather
than on the two states at both ends of an arc as you traverse an arc, as was
effectively the case with the soft drink machine. Under this model one can
view the output as a function of the state chosen, rather than of the arc
traversed. The model where outputs are a function of the state has actu-
ally been used more often in Statistical NLP, because it corresponds natu-
rally to a part of speech tagging model, as we see in Chapter 10. Indeed,

314 9 Markov Models

some people will probably consider us perverse for having presented the
arc-emission model in this chapter. But we chose the arc-emission model
because it is trivial to simulate the state-emission model using it, whereas
doing the reverse is much more difficult. As suggested above, one does
not need to think of the simpler model as having the outputs coming off
the states, rather one can view the outputs as still coming off the arcs, but
that the output distributions happen to be the same for all arcs that start at
a certain node (or that end at a certain node, if one prefers).
This suggests a general strategy. A problem with HMM models is the

large number of parameters that need to be estimated to define the model,
and it may not be possible to estimate them all accurately if not much
data is available. A straightforward strategy for dealing with this situa-
tion is to introduce assumptions that probability distributions on certain
arcs or at certain states are the same as each other. This is referred to as
parameter tying, and one thus gets tied states or tied arcs. Another possibil-PARAMETER TYING

TIED STATES
TIED ARCS

ity for reducing the number of parameters of the model is to decide that
certain things are impossible (i.e., they have probability zero), and thus to
introduce structural zeroes into themodel. Making some things impossible
adds a lot of structure to the model, and so can greatly improve the perfor-
mance of the parameter reestimation algorithm, but is only appropriate in
some circumstances.

9.4.3 Multiple input observations
We have presented the algorithms for a single input sequence. How does
one train over multiple inputs? For the kind of HMM we have been as-
suming, where every state is connected to every other state (with a non-
zero transition probability – what is sometimes called an ergodic model –ERGODIC MODEL

then there is a simple solution: we simply concatenate all the observation
sequences and train on them as one long input. The only real disadvantage
to this is that we do not get sufficient data to be able to reestimate the initial
probabilities successfully. However, often people use HMMmodels that
are not fully connected. For example, people sometimes use a feed forwardFEED FORWARD MODEL

model where there is an ordered set of states and one can only proceed at
each time instant to the same or a higher numbered state. If the HMM is
not fully connected – it contains structural zeroes – or if we do want to
be able to reestimate the initial probabilities, then we need to extend the
reeestimation formulae to work with a sequence of inputs. Provided that
we assume that the inputs are independent, this is straightforward. Wewill

9.5 Further Reading 315

not present the formulas here, but we do present the analogous formulas
for the PCFG case in Section 11.3.4.

9.4.4 Initialization of parameter values
The reestimation process only guarantees that we will find a local maxi-
mum. If we would rather find the global maximum, one approach is to try
to start the HMM in a region of the parameter space that is near the global
maximum. One can do this by trying to roughly estimate good values for
the parameters, rather than setting them randomly. In practice, good initial
estimates for the output parameters turn out to be particularly
important, while random initial estimates for the parameters and are
normally satisfactory.

9.5 Further Reading
The Viterbi algorithm was first described in (Viterbi 1967). The mathemat-
ical theory behind Hidden Markov Models was developed by Baum and
his colleagues in the late sixties and early seventies (Baum et al. 1970), and
advocated for use in speech recognition in lectures by Jack Ferguson from
the Institute for Defense Analyses. It was applied to speech processing in
the 1970s by Baker at CMU (Baker 1975), and by Jelinek and colleagues at
IBM (Jelinek et al. 1975; Jelinek 1976), and then later found its way at IBM
and elsewhere into use for other kinds of language modeling, such as part
of speech tagging.
There are many good references on HMM algorithms (within the context

of speech recognition), including (Levinson et al. 1983; Knill and Young
1997; Jelinek 1997). Particularly well-known are (Rabiner 1989; Rabiner
and Juang 1993). They consider continuous HMMs (where the output is
real valued) as well as the discrete HMMswe have considered here, contain
information on applications of HMMs to speech recognition and may also
be consulted for fairly comprehensive references on the development and
the use of HMMs. Our presentation of HMMs is howevermost closely based
on that of (Paul 1990).
Within the chapter, we have assumed a fixed HMM architecture, and

have just gone about learning optimal parameters for the HMMwithin that
architecture. However, what size and shape of HMM should one choose
for a new problem? Sometimes the nature of the problem determines the

316 9 Markov Models

architecture, as in the applications of HMMs to tagging that we discuss in
the next chapter. For circumstanceswhen this is not the case, there has been
some work on learning an appropriate HMM structure on the principle of
trying to find the most compact HMM that can adequately describe the
data (Stolcke and Omohundro 1993).
HMMs are widely used to analyze gene sequences in bioinformatics. See

for instance (Baldi and Brunak 1998; Durbin et al. 1998). As linguists, we
find it a little hard to take seriously problems over an alphabet of four
symbols, but bioinformatics is a well-funded domain to which you can
apply your new skills in Hidden Markov Modeling!

